Relationship between welding conditions, abnormal grain growth and mechanical performance in friction-stir welded 6061-T6 aluminum alloy

نویسندگان

چکیده

In this work, a relationship between welding conditions, annealing behavior, and mechanical performance of friction-stir welded (FSWed) 6061-T6 aluminum alloy was examined. the entire studied FSW range, material found to be unstable against abnormal grain growth during post-weld solutionizing treatment. However, lowering heat input tended inhibit undesirable phenomenon. addition stir zone, microstructural coarsening also observed in heat-affected whereas thermo-mechanically affected zone experienced static recrystallization. all cases, result ~25-35°<110> rotation original crystallographic texture. Hence, process suggested governed by orientation-growth mechanism. Due relatively high strain-hardening ability intrinsic coarse-grained materials, grains suppressed tensile strain transverse tests thus degrading weld ductility.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding between Ultrafine Grained 1050 and 6061-T6 Aluminum Alloys

The ultrafine grained (UFGed) 1050 Al plates with a thickness of 2 mm, which were produced by the accumulative roll bonding technique after five cycles, were friction stir butt welded to 2 mm thick 6061-T6 Al alloy plates at a different revolutionary pitch that varied from 0.5 to 1.25 mm/rev. In the stir zone, the initial nano-sized lamellar structure of the UFGed 1050 Al alloy plate transforme...

متن کامل

Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel

The present work demonstrates that friction stir welding (FSW) is a feasible route for joining 6061 aluminium (Al) alloy to AISI 1018 steel. The weld has a good weld quality and is free of cracks and porosity. The tensile failure happened at the boundary between the nugget and thermomechanically affected zone of the base Al alloy, indicating that the weld has a higher joining strength. Despite ...

متن کامل

Two-dimensional Mapping of Residual Strains in 6061-t6 Aluminum Alloy Friction Stir Welds

The residual strain profiles were measured through the thickness of friction-stir welded (FSW) plates using neutron diffraction to study the relationship between the angular distortion and the residual strain distribution. Three different weld specimens were prepared from a 6061-T6 aluminum alloy with the purpose of separating the effects of the frictional heat and plastic deformation on the re...

متن کامل

Effect of Welding Speed on Defect Features and Mechanical Performance of Friction Stir Lap Welded 7B04 Aluminum Alloy

Friction stir lap welding of 7B04 aluminum alloy was conducted in the present paper, and the effect of welding speed on the defect features and mechanical performance of lap joints was investigated. The results indicate that the hook defect at the advancing side (AS) can reduce the effective thickness of the top sheet, and the sheet thinning level is gradually lowered by increasing the welding ...

متن کامل

Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Materials Science and Engineering A-structural Materials Properties Microstructure and Processing

سال: 2021

ISSN: ['0921-5093', '1873-4936']

DOI: https://doi.org/10.1016/j.msea.2021.141409